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Arbitrary Lagrangian Eulerian method for laser plasma simulations
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SUMMARY

The arbitrary Lagrangian Eulerian (ALE) 2D code has been developed in Cartesian and cylindrical
geometries. For laser plasma simulations, the code has been extended by heat conductivity, laser absorption
and QEOS equation of state. Three particular problems (originated in laser plasma experiments) for which
pure Lagrangian simulation fails demonstrate the necessity of using the ALE method. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Laser plasma, created by the interaction of laser radiation with matter, is modeled as compressible
fluid by Euler equations with heat conductivity and laser absorption source term. Simulated prob-
lems typically involve large-scale corona expansion or target compression with moving boundaries.
Lagrangian coordinates moving with the fluid are much more convenient for such problems than
Eulerian static coordinates that are not well suited for large-scale changes of computational domain
and for moving boundaries. The compressible Euler equations with heat flux and laser absorption
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terms written in the Lagrangian coordinates are

d�

dt
+ � divu= 0, �

du
dt

+ grad p = 0 (1)

�
d�

dt
+ p divu= −div(I) − div(w) (2)

where � is the density, u the velocity, p the pressure, � the specific internal energy and w the
heat flux given by w=−� grad T with T being the temperature and � the heat conductivity. Laser
absorbtion is expressed in quasistatic approximation via energy flux density I (Poynting vector).
The system is closed by the equation of state p= p(�, �), T = T (�, �). The total Lagrangian
time derivatives in this system include convective terms d/dt = �/�t + u · grad. The movement of
each node of the Lagrangian computational mesh is defined by an ordinary differential equation
dx(t)/dt = u.

For many problems, e.g. those with shear flow, however, the Lagrangian moving mesh can
degenerate rather soon during the simulation. By degeneration we mean that the mesh loses its
regularity, some cells become non-convex or even inverted when a cell vertex crosses the edge
of the same cell. When the mesh degenerates, the Lagrangian computation cannot continue as
its assumptions on the mesh regularity are violated, and the simulation fails. The mesh distortion
problems can be avoided by using the arbitrary Lagrangian Eulerian (ALE) method [1].

2. EMPLOYED NUMERICAL METHODS

System (1)–(2) is split into weakly hyperbolic Lagrangian hydrodynamics system (with laser
absorption source term in the energy equation (2)) and parabolic heat conductivity equation.

2.1. Arbitrary Lagrangian Eulerian method

The Lagrangian hydrodynamics system is treated by the ALE method that, either after several
Lagrangian time steps or when the mesh becomes distorted, rezones the mesh and remaps con-
servative quantities from the original Lagrangian mesh to the new rezoned smoothed mesh. After
rezone and remap stage the Lagrangian computation can continue. We have developed 2D ALE
code for laser plasma simulations using logically rectangular quadrilateral mesh in Cartesian or
cylindrical coordinates [2]. For Lagrangian method we use compatible staggered method [3] con-
serving the total energy. For rezoning we employ either simple Winslow smoothing [4], or reference
Jacobian method [5], or a method derived from mesh untangling [6]. For conservative interpolation
in the remapping stage, we use piecewise linear limited reconstruction with either exact or swept
region integration [7]. The remapping is followed by a repair [8], which conservatively redistributes
conservative quantities in the new mesh, so that no new local extrema are created.

2.2. Heat conductivity and laser absorption

Heat conductivity term is treated separately by splitting from the hydrodynamics by the mimetic
method [9] that works well even on bad quality Lagrangian meshes. The fully implicit discretization

a
T n+1 − T n

�t
+ Dwn+1 = 0, wn+1 − GTn+1 = 0

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1337–1342
DOI: 10.1002/fld



ALE METHOD FOR LASER PLASMA SIMULATIONS 1339

of the heat equation in the flux form allows to use the same time step for hyperbolic hydrodynamics
and parabolic heat equation. Here, D and G are mimetic discrete operators approximating div and
−� grad. Implicit temperature is eliminated from the difference scheme and the system for heat
flux wn+1 is formed and solved numerically [9]. The norm of the heat flux |wn+1| has to be limited
by heat flux limiter derived from the ability of electrons in plasma to carry the heat energy. The
classical Spitzer–Harm plasma heat conductivity [10] with corrections is used.

Laser absorption term is included in the hydrodynamical Lagrangian step as a source term in
the energy equation. We either assume that laser is absorbed only on the critical surface which
is the density isosurface with critical density, or we neglect laser beam refraction and for straight
laser rays we solve stationary 1D Maxwell equations giving us laser intensity profiles on the rays,
including both transmitted and reflected parts of laser radiation.

2.3. Cylindrical geometry

For laser plasma applications, the cylindrical r–z geometry is essential. We have generalized
all employed numerical methods into the cylindrical geometry [11]. The Lagrangian step uses
modification of the control volume method [3] with cell centers defined at mass centers of the
cells. Both Lagrangian step and remapping phase of the ALE method involve evaluation of integrals
of low degree polynomials over polygons. The cylindrical geometry compared with the Cartesian
one brings only additional factor r into these integrals that are transformed by Green’s theorem
into integrals over the edges of the polygons and evaluated exactly. The mimetic method [9] used
in the heat equation is also generalized to cylindrical geometry.

3. NUMERICAL RESULTS

On three particular laser plasma modeling problems, which we were unable to treat by pure
Lagrangian simulation, we demonstrate the usefulness of the ALE method for laser plasma sim-
ulations. The problems model particular physical experiments performed at the Prague Asterix
Laser System.

3.1. High-velocity impact

The first class of modeled experiments are high-velocity impact problems. A small disc is irradiated
by laser beam and ablatively accelerated downwards toward the massive target. The impacting
velocity of the disc flyer is in the range of 40–200 km/s. Here, we present the impact of a
homogeneous 32.3-�m thick disc with radius 150 �m, density 0.656 g/cm3 and temperature 2.1 eV.
The impacting speed of the disc is 62 km/s downwards. The initial mesh with density color map
is shown in Figure 1(a). The disc is the upper blue part and the massive target is the lower yellow
part. The edge of the disc is smoothed. When this problem is simulated by pure Lagrangian
method, the Lagrangian moving mesh becomes seriously distorted rather soon close to the disc
edge as presented in Figure 1(c) at time t = 0.16 ns when several computational cells become
non-convex and Lagrangian computation cannot continue. The mesh distortion is caused by shear
flow at the disc edge and pure Lagrangian method cannot deal with this shear. On the other hand,
the simulation by the ALE method (shown at the same time t = 0.16 ns in Figure 1(b)) continues
without mesh distortion problems till the final time. Approximately spherical shock wave (located
in the solid part in Figure 1(d)) propagates after the impact into the target, while disc flyer material
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Figure 1. The high-velocity impact problem: density (in g/cm3) profiles for: (a) initial conditions;
(b) ALE; (c) pure Lagrangian results at time t = 0.16 ns after the impact; and (d) temperature (in eV) and

the computational mesh at time t = 70 ns after the impact.

together with a part of target is reflected in a corona-like shape, creating a crater in the massive
target. The temperature at the final time t = 70 ns is presented in Figure 1(d) in three different
colormaps distinguishing solid, liquid and gas phase of the aluminum target. Simulated crater sizes
and shapes correspond reasonably well to the experimental ones [12].

3.2. Double foil target

The double foil target of the second modeled experiment includes two parallel foils located at the
distance 360 �m. The upper 0.8-�m thick foil is irradiated by a 250-ps long laser pulse with energy
78 J, focal spot radius 40�m and wavelength 0.438 �m. The foil ablatively expands in both upward
and downward directions. Rather soon laser beam burns a hole with sub-critical plasma density in
the upper thin foil and starts to irradiate also the lower 2-�m thick foil that first starts to expand
upwards. Between the foils the plasma corona moving downwards from the upper foil collides with
the plasma corona moving upwards from the lower foil. The two plasmas touch approximately at
time of laser maximum as shown in Figure 2(a) (the overcritical density, through which laser does
not penetrate, is shown in dark red color). Later the collision of two plasmas produces a sphere-
shaped maximum in density and pressure shown at 100 ps after the laser maximum in Figure 2(b)
and (c). The temperature at the same time is presented in Figure 2(d). The temperature at the
lower part is higher due to laser absorption in the lower foil. From the density and temperature
plasma parameters obtained from simulations, one can compute X-ray emission spectra that can
be compared with the measured spectra [13].

The problematic part of this simulation is modeling the almost vacuum state with low density and
low pressure between the foils. The pure Lagrangian method is able to simulate laser interaction
with single foil when the vacuum is out of the moving computational domain and influence the
solution through the pressure boundary conditions. For the double foil target, we have to also cover
the vacuum region between the foils by the computational mesh and at the same time the mass
of the neighboring vacuum and foil cells should not differ too much. This means that foil cells
neighboring the vacuum should be very small, while the vacuum cells are big. As initial mesh
we use rectangular mesh aligned with coordinate axes which is geometric in radius r , uniform in
vacuum region in z and geometric in foils, so that, e.g. one foil rectangular cell has r/z edge lengths
ratio 104 and neighbors the vacuum cell with r/z ratio 0.2. When we perform the simulation with
such a mesh by pure Lagrangian method, the moving mesh degenerates typically soon after the
upper foil begins to expand downwards into the vacuum area and Lagrangian computation cannot

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1337–1342
DOI: 10.1002/fld



ALE METHOD FOR LASER PLASMA SIMULATIONS 1341

0
(a) (b) (c) (d)

100 200

0

–50

–100

–150

–200

–250

–300

–350

z 
[µ

m
]

r [µm]

0

5

10

15

20
0

–50

–100

–150

–200

–250

–300

–350
z 

[µ
m

]

0 100 200
r [µm]

0

5

10

15

20
0

–50

–100

–150

–200

–250

–300

–350

z 
[µ

m
]

0 100 200
r [µm]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
0

–50

–100

–150

–200

–250

–300

–350

z 
[µ

m
]

0 100 200
r [µm]

0

500

1000

1500

2000

2500

Figure 2. Double foil target, the upper foil is located at z = 0 and the lower foil at z =−360 �m:
(a) density at time of laser pulse maximum; (b) density at 100 ps; (c) pressure at 100 ps; and (d) temperature
(in eV) at 100 ps after maximum. The bottom color of minimal values is modified to light blue showing

vacuum-like areas in density and pressure and cool foils in temperature plots.
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Figure 3. Density (in g/cm3) of foam target at time (a) t = 10 ps and (b) t = 30 ps.

continue. On the other hand, the ALE method allows to simulate laser interaction with such double
foil target.

3.3. Foam target

The last simulated problem is laser interaction with foam target. The foam target is modeled by
the sequence of parallel foils; hence, it might be considered as a generalization of the double foil
target. The laser beam gradually burns through the sequence of foils. The speed of laser (burning)
penetration through such structured target is smaller than the speed in the case of modeling the
foam by uniform low-density material, which might be subcritical, and closer to experimental
measurements [14]. As an example we present here a foam modeled by the sequence of 0.02-�m
thick dense slabs with density 1 g/cm3 separated by 1.98-�m thick voids with density 1.43mg/cm3.
The foam target contains 20 such slabs and is irradiated by a laser beam with focal spot radius
125 �m. The laser intensity on the z-axis grows from zero to 7.4× 1014 W/cm2 during the first
1 ps and then remains constant. The density of this foam target at time 10 and 30 ps computed by
the ALE method is shown in Figure 3. Again pure Lagrangian method for this simulation crashes
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quite soon for reasons similar as in the case of double foil target, while the ALE method is able
to perform the simulation.

4. CONCLUSION

The ALE method has been presented briefly. Three presented simulations modeling laser plasma
experiments cannot be computed with pure Lagrangian method due to severe mesh distortion,
while the ALE method provides reasonable results. This demonstrate the power and usefulness of
the ALE method.
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